

Try L-HPC (Low-Substituted Hydroxypropyl Cellulose) to Formulate Solid Dosage Forms with Good Stability.

Introduction

L-HPC (Low-substituted Hydroxypropyl Cellulose) was first approved in 1987 as a disintegrant/binder for pharmaceutical solid dosage forms in Japan. A recent survey shows that L-HPC is ranked as the first choice for tablet disintegrant by Japanese pharmaceutical companies. Not only a disintegrant, L-HPC also functions as binder due to its good compressibility. There are many cases that L-HPC solved problems of interactions with APIs other issues such as capping.

The key benefits of L-HPC include:

- Excellent compatibility with active ingredients
- Quick and fine disintegration leading to better dissolution
- Dual functions as both disintegrant and binder
- Anti-capping effect for tableting process
- Also suitable for pellet extrusion
- Variety of grades are available depending on application

Structure of L-HPC

$$\begin{pmatrix}
Q & Q & C & H_2 & Q & R &$$

 $R = -H \text{ or } -CH_2CH(CH_3)OH$

L-HPC is not the same as HPC....

Although sharing the same CAS number, L-HPC has different characteristics from Hydroxypropylcellulose (HPC), that is a binding agent widely used for solid dosage forms. L-HPC and HPC have separate monographs in pharmacopeia. While the regular HPC has a large amount of hydroxypropoxyl groups in the cellulose backbone, L-HPC has only a small level (See the picture below). Due to this chemical difference, HPC is soluble in water, but L-HPC is insoluble. HPC is typically used for granulation binding as an aqueous solution, but L-HPC cannot be used in this way. L-HPC is an effective disintegrant due to its swelling action in water, but this is not the case with HPC. Because L-HPC also has good compressibility, dry blending of this material produces hard tablets like those made from microcrystalline cellulose. In this application, L-HPC functions as a "dry binder."

L-HPC is listed in:

- JP (Japanese Pharmacopeia)
- NF (US National Formulary)
- 21 CFR 172.870 (Code of Federal Register / Food Additive)

Excellent Compatibility to APIs.

Vitamin C Tablets

Because L-HPC is non-ionic, it is less reactive to API compared to other ionic excipients. This excellent compatibility is the best reason for the first-choice by Japanese pharma companies.

For example, aspirin tablets with L-HPC were stable under high temperature whereas ionic ingredients showed whisker of salicylic acid formed by hydrolysis (See pictures below).

Vitamin C tablets with L-HPC were also intact compared to the ionic disintegrants. The color stability was even better than microcrystalline cellulose which is another non-ionic ingredient under the same moisture level. Our further study suggests that this was due to the low water activity of L-HPC because water molecules are bound to the amorphous region of the polymer. All tablets were made by direct compression.

Vitamin C only L-HPC Croscarmellose sodium starch glycolate Cellulose Corn Starch

Wicrocrystalline Cellulose Corn Starch

Excipient content: 20%. Stored at 50°C in closed bottle for 2 months.

The following data is from a stability test of pancreatin (a digestive enzyme) that was simply blended with excipient (1:1). After six months of storage at 50 °C, amylase activity was measured. Please note that ionic excipients interacted with enzyme and reduced the activity at the initial stage. Cornstarch showed significant decrease after 6 months, but L-HPC formulation did not affect to the stability of enzyme.

L-HPC does not contain peroxide.

There are no peroxides used in the manufacturing process of L-HPC. Therefore, peroxide is not detected in the final product of L-HPC, whereas other excipients such as crospovidone shows residual peroxide (see the following data). Such residual peroxide may cause interactions with APIs, but there is no concern with L-HPC.

Peroxide Content in Excipients

	Peroxide* (as H ₂ O ₂)
Killidon CL (BASF)	200 ppm
Kollidon CL-F (BASF)	250 ppm
Polyplasdone XL (Ashland)	100 ppm
L-HPC	Not Detected

^{*}Test Paper Kit, Hishe Chemicals, Japan

Grades and Applications

A number of grades having different particle size, particle shape, and hydroxypropoxy content are available. The following table summarizes brief properties and suitable application for each grade of L-HPC. They can be used by dry blending followed by direct compression, wet granulation process (either internal and/or external addition) followed by drying and tabletting, wet granulation for pellet extrusion, or drug layering. Please contact Shin-Etsu technical experts to select a suitable grade for your application.

L-HPC Grades

	D ₅₀ *		Hydroxypropoxy	
Grade	(µm)	Particle Property	Content* (%)	Suitable for
LH-11	55	Most Fibrous	11	Anti-Capping
LH-21	45	Moderately Fibrous	11	Wet-Granulation
LH-22	45	Moderately Fibrous	8	Wet-Granulation
LH-31	20	Micronized	11	Pellet Extrusion, Drug Layering
LH-32	20	Micronized	8	Pellet Extrusion, Drug Layering
LH-B1	55	Non Fibrous, High Density	11	Fluid-Bed Granulation
NBD-020	45	Non Fibrous	14	Wet-Granulation
NBD-021	45	Non Fibrous	11	Direct Compession
NBD-022	45	Non Fibrous	8	Orally Disintegrating Tablets

^{*} Typical Value. Not specification.

For more information on L-HPC, please contact:

SE Tylose USA, Inc.

(A Shin-Etsu Chemical Group Company)

Pharmaceutical Application Laboratory 140 Commerce Way, Suite H, Totowa, NJ 07512 USA

Phone 1-973-897-8001 Fax 1-973-339-9094

E-mail: contact-pharma@setyloseusa.com http://www.shinetsupharmausa.com